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A Chebyshev pseudospectral method is generalized to solve the linear and non-
linear hydrodynamic stability problems of thermal convection in a two-dimensional
rectangular box with rigid sidewalls, where there may exist a heat source or a mag-
netic field to enhance or suppress the convection. The incompressibility condition is
imposed rigorously on all boundaries. The effects of box aspect ratio, heat source,
and magnetic field on the critical Rayleigh number and convection cell size are ex-
amined and compared with the results of other investigators. We have extended the
present technigue to nonlinear stability analysis and derived the Landau equation
that describes the temporal evolution of the strength of convection in the rectangular
box with rigid sidewalls. The results of nonlinear stability analysis are compared
with the exact results obtained by the numerical solution of the Boussinesq equa-
tion. The present technique solves linear and nonlinear convective stability problems
accurately and can be employed to solve other hydrodynamic stability problems in
finite domains. (© 2001 Academic Press

Key Wordsnonlinear hydrodynamic stability; finite domain.

1. INTRODUCTION

The convective instability of Boussinesq fluids heated from below is one of the mc
extensively studied problems of hydrodynamic stability because of its frequent occurre
in various fields of science and engineering. A full account of the linearized theory
given in Chandrasekhar [1] and Drazin and Reid [2]. This linear theory determines
critical Rayleigh number and wavenumber but does not say anything about the magni
of the amplitude of the convection cell finally obtained. The answer to this question
supplied by the nonlinear stability analysis based on perturbation techniques. The
work in this direction was done by Malkus and Veronis [3] and generalized bytchl”
et al.[4] and many others. All these analyses assume that the flow and temperature field:
periodic in the horizontal directions and seek normal mode solutions so that the resul
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142 PARK AND RYU

governing equations for the hydrodynamic stability become one dimensional. But th
results are not comparable with experiments, since the necessary lateral confining v
render the flow pattern much more complicated, making the size of convection cells in
domain nonidentical. Davis [5] was the firstinvestigator to consider a hydrodynamic stabil
problem in a finite domain where the fluid is fully confined. He studied the influence
nonslip lateral walls on the convective process in a rectangular box using a Galerkin mett
Later, Reddy and Vay[6] and van de Vooren and Dijkstra [7] employed a finite elemen
method to analyze linear convective instability in finite domains.

In the present investigation, we employ a Chebyshev pseudospectral method [8, €
solve the linear and nonlinear Rayleigherird convection problems in a two-dimensional
box with rigid sidewalls. The Boussinesq equation is reformulated using the stream funct
so that the incompressibility condition is imposed exactly. The resulting eigenvalue pre
lem involves a biharmonic operator with two boundary conditions on each boundary, i.
one Dirichlet condition and one Neumann condition. By judicious use of the Chebyst
pseudospectral method, these two boundary conditions are imposed on each boundal
rectly without introducing an auxiliary function such as vorticity. The discretized governir
equation yields the eigenvalues and eigenvectors needed in the linear stability analysis.
critical eigenvalue and eigenvector are further employed in the nonlinear stability analy:
which is based on the power series method [4]. In contrast to the usual cases with peri
boundary conditions in the horizontal direction, the present problem with rigid sidewa
produces perturbation equations that cannot be solved analytically. We solve these pe
bation equations numerically using the Chebyshev pseudospectral method and obtait
Landau equation after imposing the solvability condition. This technique is an extensior
the semianalytic method employed in the nonlinear hydrodynamic stability analysis for
Rayleigh—Bnard convection of viscoelastic fluids with periodic boundary condition in th
horizontal direction [10, 11]. The present method is quite versatile and may be employ
to solve many other hydrodynamic stability problems in confined domains.

2. FORMULATION OF THE PROBLEM

We consider a Boussinesq fluid in a two-dimensional rectangular box whose botton
maintained at a higher temperature than the top. In addition, there may exist a heat sourc
magnetic field in the domain that enhances or suppresses the thermal convection (Fig. 1
use an asterisk to denote dimensional quantities and introduce the dimensionless vari
as

X* y* Kt* dyv*
X = —, = —, t = s V = s
g 774 @ P
) (2.1)
T = T — c*old I dyP
Thot — Tcola pic?

whereT* is the temperaturel}, is the temperature at the top boundafy, is the tem-
perature at the bottom boundaty,is the time,v* is the velocity field,P* is the pressure
field, « is the thermal diffusivityp is the densitygd is the half width of the box, and, is
the half depth of the box. If the fluid in the box is electrically conducting, its motion in th

presence of a magnetic field gives rise to a Lorentz force which acts on the fluid so tha
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FIG. 1. The system and boundary conditions.

extra body force term appears in the Navier—Stokes equation. For most liquid metals
molten semiconductors, the magnetic Reynolds number, i.e., the ratio of magnetic induc
to magnetic diffusion, is so small that the Lorentz force is practically unaffected by the flc
Further, assuming that the magnetic field is parallel tofhgis, the Lorentz force per unit
volume of fluid is given by—oeB?vyi, Whereoe is the electric conductivity of the fluids

is the magnetic field, and, is thex-component of the velocity vector [12]. Thus, the set of
governing equations in dimensionless variables are

V.v=0 (2.2)
av 2 : 2
5—|—v~Vv= —VP + Prvev + RPrT] — PrHa i (2.3)
oT 5 i i
¥+V.VT = VT + G)sn(X — xXNHdn(y — ¥, (2.4)

whereP is the modified pressure given by

a3
P =P’ = (Toou — Toyd 399Y (2.5)

anda is the thermal expansion coefficient. Heflg, is the average temperature of the
system given by

1 *
s>§/S = > (Thot + Teoa)- (2.6)
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The dimensionless groupis the Rayleigh numbeRr is the Prandtl number, artdia is the
Hartmann number defined as

T — T* d3
R:(Xg( hot cold) y (2.7)
KV
pr=" (2.8)
K
o\ /2
Ha = |B|dy<e> : (2.9)
pVv

wherev is the kinematic viscosity. The dimensionless strength of heat source is denotec
G(t), and the functiors,(x — x'), which approximates the point sourcexa& x! in the
domain, is defined by

n
~ 2cosR(n(x — xH)

8n(x — x1) (2.10)

and becomes the Dirac delta functionreegpproaches infinity. In the present investigation,
we taken = 20 with (x, yt) = (0.25, —0.25). The relevant boundary conditions are

0

X = =+1; v=0, — =0 (2.12)
aXx

y =41 v=0, T=0 (2.12)

y=-1L v=0, T=1 (2.13)

When the Rayleigh numbéR is below critical, there is no fluid motion, and the basic
state or the conduction state that prevails in the system is

v=0 (2.14)
1-—
T= Ty +TO(x, y), (2.15)
whereT € satisfies the equation
V2TC 4+ Gon(x — xNsn(y —yH =0 (2.16)
and the boundary conditions
G
x=+1 T _p (2.17)
ax
y==21 T¢=0 (2.18)
On putting
_1l-y G
TX YD =—=+T7(XY) +O(XVY,1), (2.19)

2
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it follows that

V.v=0 (2.20)
av . .
i Vv = —VP + Prv?v + RPrOj — PrHa?v,i (2.21)
2 1
ot +V-V®+V-VTG—§vy=V2®. (2.22)

The relevant boundary conditions are

(o)

X = +1;

v=0, — =0 (2.23)
X
y = +1; v=0 =0 (2.24)
In terms of the stream functiodr, the above set of equations and boundary conditions me
be rewritten as

ad 00 92w
—(V2W) + J(V2Y, W) = Prv*w — RPr— — PrHa’>—— (2.25)
ot X ay?
0 ow (3TC 1 oW aTC
—4+JO, V=V —— -2 ) - —— (2.26)
ot ax \ ay 2 ay oax
av 00
X = =+1; v=0 —=0 —=0 (2.27)
aX aX
o
y = =+1; v=0 —=0 06=0, (2.28)
ay
where the Jacobiahis defined as
ot - of
_ | ax ay
J(f,9) = g 99| (2.29)
ax 9y
3. LINEAR STABILITY ANALYSIS
We assume the time dependence for the variablend® as
W = e%p(x,y) (3.1
0 =€9(x,y) 3.2)

and decide the stability of the system based on the signatuserair the linear stability
analysis, we substitute (3.1) and (3.2) into (2.25) and (2.26) and delete nonlinear ternr
find the eigenvalue problem

Ax = sBXx, 3.3)
where the differential operatofsandB are given by

Prv4 — PrHa?.¥, —RPri
A= o f’x (3.4)

G 19 2
IT® -1 v
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B [Voz (1)] (3.5)

and the eigenfunctior is defined as

x= [P (3.6)
(X, y)

The boundary conditions f@f and6é are the same as those férand®. The eigenvalue
problem (3.3) is discretized by the Chebyshev pseudospectral method [8, 9] after rele
boundary conditions are implemented. Using the Chebyshev pseudospectral methoc
can approximate differentiations of a function by matrix multiplications. The collocatio
points are selected as

(i — 1
N X

yi = cos[”(:“—;l)} (L<j<NY+D, (3.8)

Xi =cos{ } I<i<NX+1 (3.7)

whereN X and NY are the number of computational cells in theand they-direction,
respectively. Then the first, the second, and the fourth partial derivatives of a funct
f (X, y), defined for—1 < x < 1and-1 < y < 1, can be approximated by

aqf NX+1/-\(q)

Sy = GXi fea, ) (3.9)
1=1

99 f NY+1/\( )

ayr Y = 3 GY; f(xi, ). (3.10)

=1

Here the matriceé?(q) andév(q) are defined as

X = TXGX@TX (3.11)
v = VeyeTy, (3.12)
where
k=D —Dr
T = cos[T (3.13)
k—1)(j -1
T, = cos| K= DU = DT (3.14)
i NY
and
2 k—1)(j — D
X< _ — .
T NX CiC, cos[ NX (3.15)
— 2 1 k—1(j — D
Ty- - . A
ki = NY GG COS[ NY (3.16)
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The matrice SX@ andGY @ are defined as

0, ifi > jori+ jiseven
GXJ=6Y) =4, | , (3.17)
]T otherwise
Thus
GX®@ =Gx®.Gx®D (3.18)
and so forth. The coefficients and(fi are given as
Ci=2 Ch=12=n=<NX), Cnxs1=2 (3.19)
Ci=2 C,=12<n<NX+1). (3.20)

The discretization procedure for the differential operadrandB in (3.3) consists of
converting various differentiations into matrix multiplications using (3.9) and (3.10) ar
removing boundary grid values and outermost internal grid valugsaosfd6 in terms of
the remaining internal grid values by exploiting the boundary conditions. The bound:
grid values may be represented in terms of internal grid values as follows. The bounc
conditions

d
X = +1; ¢=0 and a—i =0 (3.21)

yield
$1j =0 onx+1j =0 (1=<j=<NY+1D (3.22)

NXEL NXEL
Z G Xymbmj = 0; Z GXnxpamdmj =0 (1=j=NY+1). (3.23)

Solving (3.22) and (3.23) simultaneously, we can express the outermost internal grid va
in terms of the remaining internal grid values,

NX-1 NX-1
$2;= Y Andmj: duxj = Y bmdmj (1<) <NY+1), (3.24)
m=3 m=3

where

—0 =<0 vty — (1
le NXGXNX+1m - GXNX+1 NXGX1m

am = ——1) _— — 0 —~O (3.25)
GXlZGXNX+l NX — le NXGXNX+12
Pevity) — 1) ==
bm = GXNX+1 ZGle - le ZGXNX+1m ) (326)

—~ D @ —0 0
GXlZGXNX+1NX leNXGXNX+12
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Similarly, the boundary conditions

d
y = %1, ¢ =0 and —¢=0
ay
yield
$i1=0; dinvy1=0 (1<i <NX+1)
and
NY-1 NY-1
Qi = Z Coil; diNy = Z dei) (L<i <NX+1),
1=3 1=3
where
= =
g = GY1 NYGYNY+1I GYNY+1 NYGYlI
= =00 —O0 —=0O
GYl ZGYNY+1 NY GYl NYGYNY+12
=0 =0 =0 ==O
d — GYNY+12GY1| GYlZGYNY+lI
1= ——0 <=0 ——0) —=O :
GYl ZGYNY+1 NY GYl NYGYNY+12

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

In contrast tap (X, y), 6(X, y) has only one boundary condition at each boundary:

a0
X = +1; — = (3.32)
X
y==x1 0=0. (3.33)
Thus, we remove only the boundary grid value® @is follows:
61=0 Onyy1=0 (1<i=<NX+1 (3.34)
N X N X
1= afmj: Onxsrj =Y bifmj (1<j<NY+1D), (3.35)
m=2 m=2
where
vty 01 =0
T _ le NX+1GXNX+1m lemGXNX+1 N X+1 3.36
=0 0 —1n 0 (3.36)
GXl 1G ><NX+1 N X+1 GXl NX+1G XNX+11
-0 == (1) —()
bT _ le mGXNX+11 le 1G XNX+1m (3 37)
m= 0 c® O — O '

le lG XNX+1 NX+1 ™ GXl NX-‘,—lG XN X+1,1

Removing the boundary grid points and outermostinternal grid poigtsinfl the boundary
grid points of9, the linearized stability equation (3.3) may be rewritten as

N X—
) (2
s[ Z (Gx,zam+ex,m+ex,Nxbm)¢m,
m=3
NY-1

(2
+> (&Y,
1=3

=@  =5?
o +GYj +GY] v )]
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NX-1
(4)
=Pr[ (GX2am + G Xiim + G X pxbm ) ém,

m=3
NY— @
+> (GYJ 26+ GY, +GY, NY )d)u
1=3
NX-1NY-1
Q== —2) ——2)=
+2 {(Gx, JGY 20 + GX 2GY ) + GX 2GY, Nyd.)
=3 1=3

GY;

—(2) —
+ i2

=52 =52 2 ==
JGX, m)q +GXnGYj1 + (GYjyGXim)d

(2 (2 =2 == =@ =@
+<GX,NXGYJZC| +GX nxGY,1 +GXi nxGY, ny )bm}qud

N X
vty
- RPrZ (Gx, vl + GX o+ GX, NXHbT)em,j

NY-1
—=2 ==
— PrHa? Z (GYJ 26 +GY +GYj Ny )¢i,| (3-38)
=3
aTe\ "Z'— — —
SH”- = — W) Z (GYJ,ZQ +GYJ| +GYJ',NYdI)¢i,I
i 1=3
aTe 1\ X! =0 | =50
D) O b
] m=3
X o i @
+3° (GXiaam + CXim + CXinxsabh ) omj + > G 6,1, (339)
m=2 1=2

That is, the differential eigenvalue problem (3.3) is converted into the matrix eigenva
problem

a-X=503"X, (3.40)

where the eigenvectoris defined as

X = ($33, 43, - - - » DNX-LNY-1, 022,032, - - -, ONXNY) - (3.41)

The eigenvalus of (3.40) determines the linear stability of the basic state. The basic st:
becomes unstable and convective flow sets in when the real albeafbomes positive. The
critical Rayleigh number is defined as the smallest Rayleigh number when the largest
part ofsis zero. For Rayleigh—&a3ard convection, when the largest real padisfzero, the
corresponding imaginary part efis always zero; i.e., the exchange of stabilities is valid
WhenHa = 0 andT¢ =0, i.e., for the case without a magnetic field or heat source, this
confirmed by noting that the operatarin (3.4) is self-adjoint. When there is a magnetic
field or a heat source, the validity of the exchange of stabilities is confirmed numerica
Results are obtained for rectangular boxes hadfgl, ratio (aspect ratio) in the range
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FIG. 2. Critical Rayleigh number versus the aspect ratio.

1-10 by solving the matrix eigenvalue problem (3.40) using a standard package sucl
IMSL. We adopt a (36 10) grid system for boxes with & dy/dy < 3, a (40x 10) grid for

3 < dy/dy <7, and a (50x 10) grid for 7 < dy/dy, < 10 with double precision arithmetic.
The use of finer meshes does not change the results. Figure 2 shows the critical Ray!
number for the aspect ratio in the range 1-10. The result obtained by Reddy aad V
[6] is presented in the figure for comparison. Both results show that the envelope of le
eigenvalues is a piecewise smooth curve, each smooth section of the curve correspor
to a particular mode number, i.e., number of convection cells at onset of instability. T
mode number increases discretely as the aspectdigft) increases. The most dangerous
modes at certain aspect ratios are also plotted in the figure.

Next, we investigate the effect of the heat source on the critical Rayleigh number. Figul
presents the variation of the critical Rayleigh number versus the strength of a heat so
located at (0.25;-0.25) when the box aspect ratiR/dy is 2. When the heat source is
located at this position, the increased strength of the heat source (p@itiestabilizes
the system and, consequently, reduces the critical Rayleigh number. A negative valu
G denotes the presence of a heat sink at the same location. Figure 3 also shows the
presence of a heat sink at this location (0.28,25) stabilizes the system un@ilbecomes
approximately—6. Any further decrease @, i.e., increase in the strength of the heat sink,
destabilizes the system and decreases the critical Rayleigh number. The most dange
modes, i.e., the eigenfunction with zero eigenvalue at the critical Rayleigh number,
several values db are also plotted in Fig. 3.

Figure 4 shows the effect of the location of a heat source of stréhgthl.0 on the critical
Rayleigh number. The critical Rayleigh numbers are shown as contours for various locati
of the heat source. A heat source located in the lower half of the domain destabilizes
fluid motion, while a heat source in the upper half of the domain stabilizes the system.
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d,/d=2
(X', y)=(0.25, -0.25)

300 |

250
[ Heat Source

200 |-
150 |
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50 |-
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FIG. 3. Effect of the strength of heat source at (0.29,25) on the critical Rayleigh number when the aspect
ratio is 2.

the same vertical location, the destabilizing effect of the heat source increases as its loc:
moves toward the sidewalls for the upper half domain, while the trend is reversed in
lower half domain. In Figs. 5a—5d are shown the velocity and temperature eigenfuncti
at the critical Rayleigh number when a heat source of stre@gth 1.0 is located at (0.5,
0.5) and €0.5, 0.5), respectively.

Figure 6 plots the effect of the Hartmann number on the critical Rayleigh humt
for Boussinesq fluids with electric conductivity, such as liquid metals or semiconduc

-0.5 0.0 0.5

FIG. 4. Effect of the location of heat source on the critical Rayleigh nunibigfd, = 2; G = 1).
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B =19 (© @
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FIG. 5. The velocity and temperature eigenfunctions at the critical Rayleigh number when a heat sourc
present: (a) velocity eigenfunction whér', y") = (0.5, 0.5), (b) temperature eigenfunction wher', yt) =
(0.5,0.5), (c) velocity eigenfunction wherix{, y') = (—0.5,0.5), and (d) temperature eigenfunction when
(xf, y") = (-0.5,0.5).
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FIG. 6. Effect of magnetic field on the critical Rayleigh number.



NONLINEAR CONVECTIVE STABILITY PROBLEMS 153

materials. It is shown that the critical Rayleigh number increases as the strength of
magnetic field increases. It is also shown that as the Hartmann number increases, the |
number (wavenumber) increases. The Hartmann number boundaries where the mode
ber changes are indicated by dashed lines, veh¢d, = 2.

4. NONLINEAR STABILITY ANALYSIS

The linear stability analysis gives the critical Rayleigh number, but does not pred
the magnitude of the convection cell. In this section we employ the power series metl
[4, 10, 11] to obtain an explicit expression for the magnitude of convection cell near t
critical Rayleigh number. For brevity of analysis, we consider only the caseGvithO
andHa = 0. Extension of the present analysis to the cases of norGenedHa is trivial.
Introducing a small perturbation parametemwhich indicates deviation from the critical
state, the variables may be expanded as power seriefooh weak nonlinear state:

R=R.+e?Ry+--- 4.1)
O =€O14 €204 €303+ - - 4.2)
U =Wy 4+ Wy + Wy + ... (4.3)

The scaling for the time variableis such that/at = €23/3dt. The termRy in (4.1) is
eliminated a priori, since it becomes zero due to the symmetry when the solvability cor
tion is imposed. When the disturbance variables defined as above are substituted intt
governing equation, we find the following sequence of equations:

O(e)
0
Prv4w; — RCPra_xl =0 (4.4)
19w,
VO, ——==0 4.5
1= 5 ax (4.5)
O(e?)
00 AV, QW VAW, oW
Prvéw, — RPr—= = St 121 (4.6)
E% X ay y X
100, 90,0V; 09010V
V2@, - s =21 T A7 @4.7)
2 9x ax ay ay 09X
O(ed)
00 B AV, W, AV, 9wy 9V, 9W
Prvéw, — RPre— = vy, + 1272 it 1272
X at ax ay ax ay ay  oX
AV, QW 90
- 22 L RyPr (4.8)
ay  0X ax
19w 9001 00,00, 00,0¥; 90,0V, 00,9W
V2@, 008 _ 001 0010%2 | 0D20%1 0910% 0920% -, g

2 0x 9t 9x 3y  9x dy 9y 9x Ay ox
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The relevant boundary conditions are

Y, 90 .

X==+1 ¥ =0 —=0, L=0 (=123 (4.10)
X aX
o; .

y = :I:l, ‘I’i = O, a—y = 0, @i =0 (| = 1, 2, 3) (411)

The perturbation equation for each ordenay be solved as follows.

(1) First order ). The first-order equations, Eqgs. (4.4) and (4.5), with the relevar
boundary conditions are the same as those for the linear stability analysis, Eq. (3.3), \
s = 0. Therefore, Egs. (4.4) and (4.5) may be discretized as

Q- X = 0. (412)

Herea is the same matrix as defined in Eq. (3.40) apglis defined as

;
_ (oD ¢® ) D oW )
X(l) - (\IJ3,3’ "IJ4.3’ te \IJN X-1,NY-1> ®2,2’ ®3,2’ T ®NX,NY> . (413)

The solution of Eq. (4.12) is the eigenvectoof the linear stability equation (Eq. (3.40))
with zero eigenvalues(= 0). We may write the first-order solution as

X1 = CX, (4.14)

wherex is given by Eq. (3.41). Here the amplitud= C(t) is introduced since the
magnitude of an eigenvector is arbitrary. The amplitGde determined during the solution
process for the third-order equations.

(2) Second orderef).  Since the differential operator defining the left-hand side o
the second-order equations, Egs. (4.6) and (4.7), is the same as that for the linear sta
analysis, Eq. (3.4), witif © = 0 andHa = 0, we may write the discretized form of the
second-order equations as

a-Xe = fo. (4.15)
Herea is the same matrix as defined in Eq. (3.40) apglis given by
T
2 2 2 2 2 2
xo = (V303 By 05,08 . 00) . (@416)

The right-hand side of Eq. (4.15) is given by

VAW 9W;  9VREW; W 1 i Vi 3¢ _ 3V%p 3¢ 1
ax 9y ay  dX 33 ax oy ady ox 33
VAW 9W;  9VEW; W V2 3¢ _ aV3p 3¢
. ax ay X Nx—1,NY-1 c2 x dy 9y X Nx_1NY-1
@ = =
301 0¥ 907 0y 90 3¢ _ 96 3¢
ax ay ay 09X 22 IxX Yy ay ax 292
901 0w _ 901 99 0009 _ 20 3¢
L ax dy 9y X )X NY ] L ax 9y Y X /X NY i

Equation (4.15) can be easily solved to yig|g.
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(3) Third order ¢%). The differential operator for the left-hand side of the third-orde
equations, Egs. (4.8) and (4.9), is also identical to that for the linear stability analy:

Eq. (3.4), withHa= 0 andT © = 0. Therefore, we may discretize the third-order equation
as

X = aif@ + RoPrg® +h®, (4.18)
T
wherea is the same matrix as defined in Eq. (3.40), apglis given by

.
@ ¢ @® @ 3 ®
X(3) = (\Il3,3’ \114,3’ tet \IlN X-1LNY-1> ®2,2’ ®3,2’ cet ®NX,NY> . (419)

The vectors @, g®, andh® are defined as

(V2W1)33 | [ (V)33
V2W1)Nx-1,NY- V2P)Nx—1,NY—
@ _ ( (12;? LNY-1 | _ ( ¢>)(|;;< LNY-1| _ ~E@) (4.20)
122 22
(OINxNY | L @)nxny
- a@ - - -
( 3X1)3,3 (%)33
(%) (%)
s X /NX-1,NY-1 ax /NX-1NY-1 .
g® = 0 =C 0 =CG® (4.21)
0 0
L 0 i L 0 i

r V2 90, + AV2W, W1 VAW 90,  3VAW, 9 b
ax oy ax  ay ay  dx ay  9X 33
(avzwl Wp AV, 0wy AV 3W, 3V, 9y
X Ay X dy ay  ox X ) NX—LNY-1
h® — =C3H®. (4.22)
90, 90, 4 802 0W; 90, 0 _ 96, 0¥,
X dy ax dy ay ox Wy X J)os
00, 30, | 30, Wy _ 30, W _ 303 Wy
X dy ax dy ay ox 3y X ) NX NY ]

Since the vectoh® consists of terms which are multiples of the first-order solution an
the second-order solution, it is proportionalds.
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(4) Adjoint problem. The adjoint equation to the linear stability problem, Eq. (3.40), i
given by

Bt y=-sy, (4.23)

where the superscriptdenotes the matrix transpose. The eigenvactdth zero eigenvalue

(s = 0) is the adjoint solution of the linear stability problem. Now we are in a position t
derive the Landau equation that describes the temporal variation of the amplitafie
the convection cell. Multiplying both sides of Eq. (4.18) By!, whereg is defined in

a — T T T T T T T T T T T —

VX 0 - . .
pseudospectral simulation
----- nonlinear stability analysis
Pr=0.72
A d,/d=2 |
R.=251.8
R=300
| i l !
-1.0 -0.5 0.0 0.5 1.0
X
b
Vy

-05 0.0 0.5

X

FIG.7. Velocity components obtained by the nonlinear stability analysis and pseudospectral simulation w|
dh/dy = 22 ()vy, (b) vy.
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Eq. (3.40), and taking inner product of the resulting equation with the adjoint we¢tbr
Eq. (4.23)), we find
0
.87 ) xg) = 5, B A+ RPr{y, 371 g?) + (y. 871 h®). (4.29)

Since the left-hand side of Eq. (4.24) is zero from the definition of the adjoint solution, \
find the following form of the Landau equation:

{y,87* F(3)>% + RPrC(y, 37 1-G®) + C¥y, 31 - H®) =0. (4.25)

For the supercritical bifurcation, which is the case with the normal Rayleigha&l
problem [2], we can find the steady amplitude of the convection cell from Eq. (4.25) as

~(R=R)(y. 8-GO
€Cs = \/ 5. ﬂ<l ey >, (4.26)

where Eq. (4.1) is invoked to replaé® in terms ofR and R.. From this, we can obtain the
velocity and temperature field at the steady state for a given Rayleigh number if Egs. (:
and (4.3) are exploited. Then, the Nusselt nunithers given by

90,
ay

007

+ (¢C)? (4.27)

y=-1

To corroborate the results of the nonlinear stability analysis, we solve the Boussin
equation, Egs. (2.20)—(2.22), using the Chebyshev pseudospectral method and compa

8 nonlinear stability analysis
I o pseudospectral simulation

g | ]
S gl Pr=0.72 -
> d,/d,=2 1
N:J
— .

4_

2_

! . . s . l . . . . ! . . . L
250 300 350 400

Rayleigh Number

FIG. 8. Intensity of convection versus the Rayleigh number: comparison of the nonlinear stability analy
and the Chebyshev pseudospectral simulation vitrea 0.72 andd, /dy = 2.
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results with those of the nonlinear stability analysis. Details of the Chebyshev pseudospe
method as applied to the Boussinesq equation are given in Park and Chung [13]. Figure
and 7b plot thex-componenty, (Fig. 7a), and thg-componentyy (Fig. 7b), of the velocity
vector, as obtained by the nonlinear stability analysis and the Chebyshev pseudospe
simulation, respectively, wher = 0.72, d,/dy = 2.0, the critical Rayleigh numbé®; =
2518, and the Rayleigh numbdR = 300. Figure 8 shows the intensity of convection,
defined as the magnitude of the velocity integrated over the domain, versus the Rayle
number wherd,/dy = 2.0. The solid line denotes the convection intensity obtained b
the nonlinear stability analysis, while that from the pseudospectral method is indicated
small circles. It is shown that the nonlinear stability analysis predicts correct convectsi

a
VX
-1.0 -0.5 0.0 0.5 1.0
X pseudospectral simulation
“““ nonlinear stability analysis
b
VY

-1.0 -0.5 0.0 0.5 1.0

FIG. 9. Comparison of the nonlinear stability analysis with the Chebyshev pseudospectral simulation wt
dy/dy, =10, R; = 2162, andR = 250 : (a)vx, (b) vy.
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pseudospectral simulation

noniinear stability analysis

20F — — & T
- R Pr=0.72

o P /v d,/d=10
R,=216.2
R=250

15 _
Nu

1.0

-1.0 -0.5 0.0 05 1.0

FIG. 10. Comparison of the Nusselt number whad, = 10 andR = 250(R. = 216.2).

intensity even when the Rayleigh numiiis over 1.5%;. Figures 9 and 10 show the
comparison of velocity (Fig. 9) and Nusselt number (Fig. 10) obtained by the nonline
stability analysis and pseudospectral simulation, respectively, Wes 0.72, dy/d, =
10.0, andR = 250. The critical Rayleigh numbé®. is 216.2 when the aspect ratig/dy

is 10.0. Figure 9a is fory, Fig. 9b is forvy, and Fig. 10 is for the Nusselt number. Results
from both the nonlinear stability analysis and the pseudospectral simulation show that
amplitude of convection cell diminishes near the sidewalls as a result of the nonslip bounc
condition.

5. CONCLUSION

A method for performing linear and nonlinear hydrodynamic stability analysis in fini
domains is developed. Specifically, in the present investigation, we consider a Raylei
Bénard problem in a two-dimensional domain where a heat source or a magnetic f
that enhances or suppresses the convection may be present. By a judicious applicati
the Chebyshev pseudospectral method, the incompressibility condition is imposed exe
at the nonslip boundaries, avoiding the use of a penalty term that incurs numerical el
The present technique allows us to derive a Landau equation that predicts the evolt
of the convection cell in a finite domain with respect to the Rayleigh number. The rest
based on the nonlinear stability analysis are compared with those obtained from the e
numerical solution of the Boussinesq equation, and both results are found to be in g
agreement with each other. The present technique is quite versatile and may be employ
solve other hydrodynamic stability problems in finite domains. Although we consider tw
dimensional problems in the present investigation, there are several avenues for exter
the present technique to three-dimensional problems. If we assume the convection pa
in the three-dimensional domain to be poloidal [1], the present technique can be emplc
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wi

thout significant modification to solve the stability problem. Otherwise, we may empilc

the vector potential formulation or the primitive variables to solve more general thre
dimensional hydrodynamic stability problems, both of which are methods currently bei
pursued.

AW N PP
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